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Abstract 

The geometry of the "moment" map of the action of the diffeomorphism group of the circle on 
loop spaces is studied in detail. We also develop aspects of the general symplectic geometry of 
loop spaces and deduce e.g. a Hamiltonian description of nonlinear Sigma-models. 
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O. Introduction 

The last two decades have seen a renaissance of the interplay between mathematics and 
physics and quite a prominent role in it is played by loop spaces. They are the physical 
configuration spaces of "closed bosonic strings", i.e. loops in a (pseudo-)Riemannian 
manifold. Attempts to derive properties of "quantized string field theories" geometrically 
led physicists to the idea of applying geometric quantization techniques to the loop space 
(see [Bo-Ra] and references therein). 

Other quantum field theories like "super-symmetric nonlinear Sigma-models" also 
involve the study of loop spaces, especially their Dirac-operators (see [Benn] and 
[Seg] and references therein). Again the symplectic geometry of loop spaces seems to 
be important for the geometric understanding (see [At] ). 

Motivated by the goal to justify and generalize the geometric quantization approach 
to the quantization of strings one should always work Diff(S 1 )-equivariantly (Diff(S 1 ) 
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acts by reparametrizing maps from the circle to the manifold): physically spoken strings 
are demanded "to have no internal structure", mathematically one is, after all, interested 
in varieties, here closed arcs, rather than in the parametrizing maps. 

The present work develops rigorously the classical symplectic geometry of the 
Diff(S l )-action on loop spaces--considering it as an important example of infinite- 
dimensional geometry. The results can be summarized by saying that the Diff( S 1 )-action 
comes with a smooth "moment" map ~, which has most of the properties classical mo- 
ment maps enjoy in the finite-dimensional setting--despite the fact that the (weakly) 
symplectic form has degeneracy and the action is neither differentiable in any strong 
sense nor proper. 

More concretely, it is e.g. shown that the kernel of the differential D~  is the skew- 
complement to the orbit and the image of D~  in a point 3/ is the annihilator of the 
isotropy algebra of ~. Furthermore we find a surprisingly simple geometric description 
of the generic orbit structure: the ¢}-fibres and the orbits intersect in a circle and their 
tangent spaces add up, together with a one-dimensional slice, to the whole tangent space. 
This enables us to describe the reduced spaces, i.e. the "symplectic quotient of the loop 
space by the action". 

The article is organized as follows. The first section describes the symplectic structure 
and the Diff(S l)-action, considering carefully the crucial differentiability problems, 
which are typical for infinite-dimensional situations. In the second section we derive 
the coadjoint action of Diff(Sl),  define the moment map and prove its smoothness. 
In Section 3 we prove the above sketched results about ~, comparing them with the 
classical situation recalled in Subsection 2.4. We stress that these results can not be 
proven by simply extending all the notions to infinite dimensions. 

The fourth and last section consists of several remarks which involve the symplectic 
structure of the loop space. For example, in Subsection 4.4 we give a symplectic 

description of non-linear Sigma-models: a Hamiltonian formulation for a classical field 
theory built from the set of maps from a cylinder to a Riemannian manifold M and 
the harmonic map equation as the governing field equation ("Sigma-models"). The 
Hamilton function in this picture consists of the fibre norm (of the tangent bundle of 

the loop space of M), which should give rise to a Laplacian after quantization--and the 
Hamiltonian generator of the reparametrization by rotation of a loop. This is the classical 

counterpart of the use of equivariant Laplacians in the (partly heuristical) attempts to 
quantize Sigma-models (see [Benn] and references therein). 

1. The weakly symplectic structure 

1.1. Spaces of loops 

We will consider an arbitrary Riemannian manifold (M, g), which we neither assume 
to be compact nor to be complete, and will denote its Levi-Civita connection on TM 
and associated bundles by xT. 
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The space of smooth loops, C°°(SI,M) with its standard structure of a Frechet 
manifold (see [HI ) will be called X~. Several completions to Banach manifolds of 
mappings are possible, most notably Xk := Hk'2(S l, M), the space of (Sobolev) maps 
whose kth (covariant) derivative is square integrable with respect to the unique flat 
metric on the circle S l inducing the bi-invariant measure of total mass 1 on S I. (We 
identify S 1 with [0, 1]/ ,--  and denote elements of I := [0, 1] by t, the above mentioned 
measure by dt and the dual vector field by d/dt). 

For k E N ->1 these spaces are smooth Hilbert manifolds modelled on Hk'2(sl ,~,d) ,  

where d = dim~M(see e.g. [E].) In the sequel we will sometimes use the letter X 
for Xoo and Xk, if a distinction is not necessary. We would like to remark that for 
reasons coming from physics and measure theory it seems to be desirable to work with 
loops of the "Sobolev quality H 1/2'2'', but since a function in H1/2"2(S 1 , R )  is not even 

necessarily essentially bounded it is not possible to define a smooth manifold structure 
on H1/2'2(S 1 , M), which can nevertheless be given set-theoretically by embedding M 
into R n. 

What is possible and useful is to define certain completions of the tangent bundle of 
X. Let us recall the following identifications: For y E X~,T~X~ = Fc~(S1,y*TM), 
i.e., a tangent vector to y is a vector field along the map y. 

Denoting the induced connection on y*TM by V/dt, we get the following norms for 

a measurable section of y*TM: 

1 2/ Ilullk := gr(t)(u(t),u(t))dt 
0 

+ j=~l :g~,(,)  ( \ ~ - ~ )  u(t), "-~ j u( t) ) dt. 

It follows that T~Xk = Fm.2( SI, y*TM). 
Obviously TXk can now be completed fibrewise with respect to any weaker norm than 

II ]]k, most notably we introduce for all k and c~ the "L2-metric '' on TrX: 

1 

(u,.>0 := fg,(t)(u(t) 
0 

,v( t)) .  

The completion of TX with the L2-metric will be called L(X) and sections of it are 
referred to as "LZ-vector fields" on X. 

We would like to introduce, painfully enough, another bundle, namely the "good" 
cotangent bundle of X~: 

]P~Xoo := Fc oo (S l , y*T*M) , 

which by its natural pairing 
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1 

~ X o o  x TyXoo ~ I~, (b,u), , f b(t)(u(t))dt 
0 

should sit in any reasonable cotangent bundle of Xoo. Note that there is no problem in 
the definition of cotangent bundles in the category of Hilbert manifolds. 

1.2. Reparametrizat ion o f  loops 

Being interested in geometry, i.e. in subvarieties more than in the parametrization 
maps, one would like to work modulo the action of ~, the group of orientation preserving 
diffeomorphisms of the circle. The same goal can be drawn from the physical demand 
that "strings have no internal structure". The action is given by 

O : O x X o o  ~Xoo, ( g , y ) ,  , T o g  - l  

and is smooth if G is given its natural Frechet group structure and differentiability is 
defined in the usual sense for Frechet spaces (see [H] for the relevant definitions). The 
differential of the map 

Og : Xoo ' Xoo, y ' ~ y o g - I  

is given by (Og) ,g (U)  ---- U o g  -1 for u E TrXoo. Going to the Sobolev manifolds Xk the 
maps #g pertain to be smooth with the above differential, but the equation 

(DO)(g ,T) (~ ,U)  

for ~ ~ Tg~7 = Fc~o ( 

G × Xk , Xk. 
An easy argument 

= u o g  -1 - ( ( D y )  o g  -1 )  • ( ( D g )  -1 o ( o g  -1) (*) 

S 1 , g*TS l ) and u E TrX, shows that O is not even C 1 as a map 

with metrics on S 1 and M yields the fact that O is always C °. 
We remark that it is possible to work with the groups Gk := {g E Hk'2(S  l , S l ) I g is 
bijective and g-1 E Hk '2 (S1 ,S1 ) }  for k > 2 (for k = 1, the set ~l is not a group), 
whose multiplication and inversion are C °, but not C 1 with respect to their natural 
Hilbert manifold structure as open subsets of Hk'2(S1 ,S  1 ), and in fact we will use 
appropriate "Sobolev-diffeomorphisms" to prove certain facts, but since these actions 

Gk X Xk -----' Xk 

are only C O as well we see no point in complicating things. We denote the rotation 
subgroup of G by Rot S I and remark that--again by Eq. (* )mnot  even Rot S 1 acts 
C 1 on Xk. Since the Lie algebra g of ~ is isomorphic to F c o o ( S I , T S  1 ) with (minus) 
the standard bracket on vector fields (see subsection 2.1 for a summary of this and 
related facts), we can give an explicit description of the fundamental vector fields of 
the G-action on Xoo: 
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g , -= (xoo)  = r c ~ ( X o o , T X ~ ) ,  

= f ( t )  d /d t ,  , sex, 

[~:x(~)] ( t ) = - f ( t ) ~ , ( t ) ,  

where "~ (t) = (9,.) r (d/dt[t).  For the generator of the rotations we get especially 

[~'x(~/)] (t) = - ~ ( t )  . 

Obviously, these objects do not give rise to section in the tangent bundles of Xk, but 
in their Hk-l'2-completions. So we get "generalized L2-vector fields", which are indeed 
smooth sections (of the appropriate bundles). See e.g. [K1] for the smoothness of (x 
in the case of k = 1, the general result follows similarly. 

1.3. The canonical I-form on the loop space of a Riemannian manifold 

For a smooth loop 9' one can define the following functional on T~Xoo (see [At] ): 

Definition 1. 
1 

At~,(u) := ~ g~,(O(u(t),~/(t))dt. 
0 

Remarks 2. 
( 1 ) Geometrically At~,(u) measures the average of the length of the tangential part of 

the vector field u along "g weighted by the norm of velocity of % This implies 
obviously that the kernel of Atr consists of those vector fields along ), which are 
orthogonal to ~, in the L2-metric: 

kern Ate, = {u E T~Xoo I (u, ~')0 = 0}. 

(2) Atr(u) is the result of pairing the element ½g(~,, *) of -* T~ X~ with u. These func- 
tionals fit together to form a smooth section of 7~*Xoo. 

(3) The construction of At is closely related to the following method of producing 
differential forms on mapping spaces: 

Let Map (N, M) be the space of smooth (H k,2' C k, etc.) maps from a compact 
oriented n-dimensional manifold N to a manifold M. The evaluation map 

Ev 
N × M a p ( N , M )  ,M,  ( n , f ) ,  , f ( n )  

yields by pullback differential forms on its LHS, fibre integration over N gives us 
a linear map: 

Eq(M) , •q-n(Map (N ,M) ) ,  

, / E v * ( O )  =: 
/ i  

oq, o) q - n  " 

d 

N 
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The group Diff(N) x Diff(M) acts on Map ( N , M )  and the form to q-n is invariant 
under Diff+(N) x Diffa(M),  where Diff+(N) denotes the orientation preserving dif- 
feomorphisms of N and Diffa(M ) the/2-preserving diffeomorphisms of M. Furthermore 

= fNEV*(d /2 ) .  
In the case of loop spaces of three-manifolds this idea was exploited in [Ma-We] and 

[Br] by taking 12 equal to a volume form on M, giving a closed 2-form on X. 
It is also related to Chen's "Iterated Integrals" [Ch], which lead to the calculation 

of loop space cohomology. In the case at hand we pull back a symmetric 2-tensor, the 
metric, integrate over a 1-dimensional (!) manifold and are left with a l-tensor, which 
is as well a l-form. 

Without relying on the above principles we will make explicit the main invariance 
properties of/~ on X. For this aim we define the following useful map: 

C ~ ( S t , S  1) , C ~ ( S ~ , ~ ) ,  gL , g ,  

where g is defined by 

( g . ) ,  (d/dt l t )  = g( t) d/dtlg( ,) .  

For g E G this function g is strictly positive on S 1 . (We remark that this works as well 
in the Sobolev cases.) Furthermore we define a section or of/xPT*Xoo to be "invariant" 
by a diffeomorphism ~b of Xo~ iff 

( l # * O r ) r ( U  1 . . . . .  Up ) :=  O'~b(y) ( I # , U l  . . . .  tip,Up) = OFT(//l . . . . .  Up ) 

f o r  a l l  Uj E TyXoo. 

Lemma 3. /z is ~-invariant, i.e. ag~iz = Iz for  all g in G. 

Proof  Obvious. [] 

Definition 4. Given M and g, the isometry group of (M, g) will be denoted by H. 

We observe that the actions of ~ and H commute! 

Lemma 5. /x is H-invariant. 

Proof  H acts on X~ by 

Oh : Xoo ~ Xoo, y l 

with differential 

~ h o y  

( Oh) , (u ) (  t) = ( Dh)~,(t)(u( t) ) 

for u E TrXoo. Thus we get 

( u )  =  ho,( ( Oh ) .U)  = . [] 
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We remark that the action of /~H,  the group of smooth loops in H, on Xoo preserves 

the L2-product on TXoo, but not/z!  

Going to the category of Sobolev loops, we see that 

and thus # is a section not only of T*Xk, but of 

( L (X )  )* C T*Xk = (TXk)*. 

We close this section with the smoothness of this section: 

Lemma 6. /x is a smooth section of L(Xk)* for all k > 1. 

Proof Let U be a smooth local section of L(Xk).  Since (x is a smooth global section of 

L(Xk) and (,)0 a smooth fibre metric on L(Xk) it follows that y ,  > ( U ( y ) , ( x ( Y ) ) o  
is a smooth function. Thus/x is smooth as well. [] 

1.4. The weakly symplectic structure of the loop space 

Given the canonical 1-form/~ on a loop space, we proceed as follows: 

Definition 7. The weakly symplectic form on a loop space is defined as 

w := dlz. 

Remarks 8. 
( 1 ) As in the case of finite dimensions 

(d/~) (U, V) := U(tz(V))  - V( tz(U))  - /~([U,  V ] ) ,  

for U, V smooth, locally defined vector fields on X. 
(2) To cast this in the case of X~  into the language of sections of vector bundles 

on X necessitates a suitable notion of tensor products of locally convex complete 

topological vector spaces, which we do not need in the sequel and therefore omit. 

In the case of Sobolev loops all bundles are Hilbert bundles and there is no problem 
of taking tensor bundles. Thus 

,o c rc~ (xk, A2~T*X,)) , 

and even better (see below). 

Lemma 9. Let y be in Xo~ and u, v E TrXoo, then 

1 

Vu 
w~(u,v)= f g~,~,) (--~(t),v(t))dt. 

o 
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Proof. Let u and v be elements in TrX~, i.e. smooth sections of TM along Y. We find 
an open neighbourhood B of 0 in the 2-dimensional subspace spanned by u and v in 

TrXoo, such that 

D : B  >X,O(r ,s )  :=Exp~(ru+sv) ,  

(given by (Exp~(w)) ( t )  := Expv(,)(w(t))  for w E TvXoo) is a well-defined map with 

O(0, 0) = y and 

(O.)(o,o)(u) = u, (O.)(0,0)(v) = v ,  

if we consider u and v on the LHS as constant vector fields on TrXoo. In the sequel we 
will consider the following "extensions" of u and v: 

U :=O,(u) ,  V = O . ( v )  , 

which are in fact vector fields along O. It is furthermore useful to introduce the map 

0 :B x S l - -~ M, O(r,s , t)  :=O(r , s ) ( t ) .  

It allows us to describe the velocity field on a curve O(r,s)  by O.(a/at) =: ( and to 

identify 

u = o . ( a / a r ) ,  . 

By remark 8( 1 ) above, it suffices to find local extensions of u and v in the neighbourhood 

of y. 
In fact we need to know the extension fi of u only in direction of the flow of the 

extensions ~ of v and vice versa. Thus fi = U, ~ = V do the job. Denoting O(r,O,t) by 

7r(t) we find: 

1 

1 0 r = 0 /  u( /z(V))  = ~ ~rr {g~,r(t)(V~,,(t), ~/r( t))}dt  

0 
1 

= ~ {g~,,(,) (V,,(t), ( ( y r ( t ) ) ) }  at 

o 
1 

'f{ = ~ g'rr(t) ( V u V ( T r ( t ) ) ,  6~(Tr(t)) 

0 

+gr, u) (V(yr( t )  ), ~Tuf(Yr(t) ) ) }l~=odt 

1 

'J{ = -~ g~(t) (VuV, s r)  +g~(t) (V, Vu• )}d t .  

o 

Recalling the above definition of d/z and the following three facts: 
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- U, V and ( commute, 

- the torsion of V vanishes, 

- (V¢U)(y(t)) = (Vu/dt)(t)  
(see e.g. [Ga-Hu-La] ) imply straightforwardly 

1 

Vu 
(d~)~ (u,v) = f g, u) ( - ~ ( t ) ,  v(t))  dt. 

0 

[] 

R e m a r k s  1 0 .  

(1) The same formula holds for y E Xk, k > 1. 

(2) The lemma shows that it suffices to assume that u is of the quality H 1,2 and v of 
quality L 2 (or both of class H1/2'2!). Thus we can define a "tensor field" tb by 

prescribing the order: 

l 

Vu 
(o~(u,v) := f g~u) ( - ~ ( t ) , v ( t ) ) d t  

0 

for all u E TrX, the HI,2-completion of the tangent space, and v E L(X) r, the L 2- 
completion of the tangent space. This yields a smooth section tb of (TX)* ®L(X)*, 
since the map u, ~ Vu/dt is a smooth linear bundle map TX , L(X) (see e.g. 

[KI] ). Thus we get for each smooth section ~¢ of L(X) a smooth l-form on X by 

contraction: 

(i~:~) (U) := - b ( U ,  sex), 

where U is a locally defined vector field on X. 
(3) Since/z is (~  x H)-invariant, the same is true for to. 

Now we will compute the degeneration of the obviously closed 2-form to, showing that 
its dimension is always bounded by the dimension of M. Since the loop space is infinite 
dimensional, this allows to call to "weakly symplectic". 

L e m m a  1 1 .  Let y be in Xoo, then 

kernto z, = {u E TrX~o I (Vu/dt)(t)  = 0  Vt} 

and this space is included in 

kern(P~ - Id) C Tr(o)M, 

where P1 denotes the parallel transport along y. 

Proof Let u E kern w~, then 

1 

O=°~y(u,v) = f gy(t) (~t (t),v(t) ) 
o 

Vv E T~,Xoo. 
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Setting v = XTu/dt implies ~Tu/dt = 0. Obviously V u / d t  = 0 implies that u is in kern 

toe. Given u(0)  E Trio)M, parallel transport along 3' yields a unique smooth section 
u : I = [ 0, l ] ~ TM over 3, such that 

~ u  0 and u(0)  u(0)  - ~ ( t )  = = . 

This u is in TeX~ iff u(O) = u(1)  to all orders, thus implying especially 

P~(u(O)) = u ( 1 ) .  [ ]  

R e m a r k s  12. 

(1) We denote kern toe by N~, in the sequel of  this work. 

(2) One obviously finds d imkernto  e < d i m M  for all y E Xoo. 

(3) For a generic loop kernto e = {0}, since Eig(Pl ,  1) = {0}. 
(4) For constant loops y( t )  ~ y ( 0 )  and parallel transport is trivial, giving Kern toy _~ 

Te~o)M. 
(5) The lemma holds verbatim for Xk, with the appropriate changes in the proof. 

Though to has degeneracy, one may still attempt to define a ( (Ro t  S 1 )-invariant) "com- 

patible almost complex structure" J on X, i.e. a smooth vector bundle endomorphism J 

of  TX such that 

J 2 = - I d m o d ( k e r n t o r ) ,  J r = 0  on kernto e ,  

we(u, Jeu) > 0 for all 7 and u E T~X\  (kernto e) . 

This is indeed possible in the flat case by means of Fourier-modes (see [Bo-Ra] ) and 
its pointwise extension to the general case is sketched in [Seg].  We will provide this 

construction in some detail, since it will be useful in Section 3, and we will comment  
briefly on its shortcomings. L e t / ~  be the pre-Hilbert space (TrX) c = F ( S  I , 7*TM ® C) 
with the L2-scalar product ( , )0- By means of the spectral decomposition of the 

symmetric operator A e := iXT/dt we define J~ := i f ( A t ) ,  where f is compounded of 
characteristic functions: f = -X~<0 + X~>0 (see e.g. [R] for the symbolic calculus of  

normal operators).  
The operator J~ extends to a selfadjoint bounded operator on H, the completion of 

(/z/, ( , )0) and respects the real points of  H. We denote the restriction of J~r to TrX~ 
(let us concentrate here on the smooth case) by Jr  and summarize its properties: 

L e m m a  13. The endomorphism Je of TeX~ is continuous with respect to the above 
pre-Hilbert topology and fulfills: 

(i) j2 = _ Id mod(kern to r ) ,  

(ii) Je = 0 on kern to r, 
(iii) Jr is anti-selfadjoint with respect to ( , )o, 
(iv) toz,( Jru, Jrv) = to(u ,v)  Vu, v E TrXoo, 
(v) tor(u, Jru) > 0 Vu E TrX~ \ kernto r. 
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Proof. The claims follow easily by the properties of the spectral measure of  the sym- 

metric operator A (see again [R] ). [] 

We remark that the discontinuity of the function f in 0 causes the section J : X , 
End(TX) to be not even continuous with respect to the ( , )0-topology on End(TX), 

not speaking of any derivative. Thus we do not get an almost complex structure in the 
desired sense (but the weaker notion of a "polarization" seems to be achievable, see 

[Seg] !). 

2. The moment  map of  the Diff(S1)-action 

2.1. The group Diff( S l) and a family of its representations 

Let E := C °~ (S l , ~ )  be the Frechet space of smooth real-valued functions on S 1 and 

F := E @~ C = C ~ ( S  1 , C) its complexification. 

Recalling that the "differential" g of g C G is a strictly positive, real-valued function 
on S l (see Section 1.3), we can define the following maps: 

7k : ~ ----* End (F)  

(rk(g)" f ) ( t )  := (p , (g - t ( t ) ) )k  f ( g - l ( t ) )  , 

w h e r e k c C ,  g E ~ a n d  f E F .  

Lemma 14. For all k E C, 7"k defines a representation o f f  by bounded linear operators 
on F. 

Proof Straightforward computation, [] 

Remarks  15. 

(1) If  k is real r~ restricts to a representation of G on E. 
(2) F. Bien defined a bigger family of representations which depends on a second 

complex parameter as well, and relates it to the Verma modules of the Virasoro 
algebra [Bi]. 

(3) At least if k is an integer, these representations can be interpreted as the spaces 
of smooth sections of G-homogeneous complex (resp. real) line bundles over S 1, 
namely K k = (TS I ®~ C) k, Of course this generalizes for arbitrary k, to the notion 
of the "bundle of k-densities". 

(4) The mappings G × F ~ F, (g, f )  ~ rk(g) • f are smooth mappings of Frechet 
manifolds (see [H] for the appropriate notion of differentiability). 

For the convenience of the reader and in order to introduce relevant concepts for later 
use we recall the basic results on diffeomorphism groups (see e.g. [Mil] for a proof). 
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Proposi t ion 16. Let X be a compact smooth real manifold and Diff(X) the group of 
its diffeomorphisms. Then the following holds: 

(i) The Lie algebra of Diff(X)  is isomorphic to the Lie algebra ~ ( X )  of smooth 
vector fields on X (but with reversed commutator). 

(ii) The exponential map from ~ (  X) to Diff(X) is given by mapping a vector field 
on X to the flow of ~ (on X) at time 1: 

exp Diff(x) :_~(X)  ~ Di f f (X) ,  ~:, , ~b~. 

R e m a r k  17. It should be recalled that this exponential map is not a local homeomor-  
phism near the origin. 

We are now in a position to compute easily the infinitesimal versions of  the representa- 
tions rk, which we will denote as well by ~'k. For ~: C g := Te Diff(S I ) = -~(S 1 ) and ~O~ 

the flow of  ~: on S I , and f E F we get 

d o  rk(~) • f = -~ (q'k(gs) " f )  , 

where gs = ~9s ~ is interpreted as a curve in ~. 

L e m m a 1 8 .  Let ~ = h ( t )  d / d t  E g=  ~ ( S  1) (where h E C~(S1,g{))  and f E F =  
C ~ ( S I , C ) ,  then 

(7"k(~) . f )  (t) = ( - h ( t )  f ( t )  + kh(t) f ( t )  ) . 

Proof 

The second term obviously equals - ~ ( f ) ( t )  = - h ( t ) f ( t ) .  A direct calculation now 

shows 

d s---o d--ss [gs(gsl( t ) )]  = h(t) 

and thus 

(q'k ( h ( t ) ~ )  " f ) (t) = k h ( t ) f ( t )  - h ( t ) f ( t ) .  [] 

2.2. The adjoint and coadjoint representation of ~ = Diff(S l ) 

As a further application of  Proposition 16 we can identify the adjoint and coadjoint 

representation of  G. 
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~-' 1 L e m m a  19. Let g = = ( S  ) be identified with E = C°°(S l R) by means of the 
trivializing section d /d t  of TS 1. Then the adjoint action of ~ on g identifies with rl on 
E. 

Proof In general the adjoint representation of  a group G on its Lie algebra g is given 
by 

Ad : G , G L ( g ) ,  A d ( g ) ( s  ¢) = (intg). ,  (s ¢) 

= d ~0 (g" expC(ssC)g-l) " 

Specializing to s ¢ = f ( t ) d / d t  C g = -~(S I ) with exp(s~:) = ~Os(, the flow of s ¢ on S l at 
time s, and g E G = Diff  + (S 1 ), we get: 

d .._o (Ad(g )  .~:) ( t ) =  ~ss ( g ° O f ° g - l ( t ) )  

= g,s_l,,, (~¢(g- l ( t ) ) )  

d 
= g ( g - I  (t)) f(g-I (t))_~. 

Thus, identifying g with E via ~¢ = f ( t )  d /d t l  , f ( t ) ,  we conclude Ad ~ "rl. [] 

To proceed to the coadjoint representation we remark that the topological vector space 
g* is isomorphic to E '  = ( C ° ° ( S  1 , R) ) r ,  the space of  distributions on the circle. Thus 
L l (S  1 , R)  is canonically embedded as a linear subspace in g*: 

1 

L l ( S l , R )  J , g * = E ' ,  j ( o t ) ( f )  := f f(t)a(t)dt. 
0 

(We will suppress the letter j in the sequel.) This, in turn, yields a chain of  subspaces: 

greg ;= E C Hk 'p(s I ,~)  C C°(S1,]~) C L I ( s I , R )  c g* = E ' ,  

where k E N ->1 , p E N >l U {oo} and all inclusions are continuous embeddings relative 
to their respective structures as topological vector spaces. 

L e m m a  2 0 .  The subspaces greg, Hk'p ( s l  , • ) ,  CO ( s l  , ~ ), and L 1 ( S 1 , ~{ ) are G-invar- 

iant under the coadjoint representation of G. This representation is isomorphic to r - 2  
on ~* ~ E and is given on L I ( s  1 R)  by the obvious extension oft_2: reg 

( A d * ( g ) .  a )  ( t )  = [ g ( g - l ( t ) ) ] - 2  ot(g- l ( t ) )  

for g E G and a E L1 (S1,]R). 
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* ~ C ~ ( S I , R ) ,  f E g ~ C ~ ( S 1 , R ) ,  and g C ~, then: Proof Let a E greg = 

(Ad* (g)  • a )  ( f )  = a ( A d ( g  -1 ) • f )  

1 

= / ( g - I  ) ° (g( t) ) f (g( t ) )a(  t)dt 

0 

1 

= f tg(g-'(s))]-2f(s)a(g-l(s))ds 
0 

I 

= / f ( s )  ( r - 2 ( g )  • a) (s)ds ,  

0 

thus 

r ~ J  
Ad* g~g = r - 2 .  

Since the same computation applies to a C L 1 (S  l , JR), the leflama is proven. [] 

R e m a r k  21. The lemma clearly explains why the coadjoint  vectors are often considered 

as "quadratic differentials": a E gr*eg transforms under g E G as a section of  ®2(T'S1 ). 

We would l ike to describe briefly the orbit  structure of  ~ on g* (see e.g. [Ki ,Wi]  for 

a more detailed analysis) .  

Proposit ion 22. / f  a E g~eg and a is everywhere positive, then there exists a g E 
such that Ad* (g)  • a is a positive constant. 

Proof We set I 0 ( a )  l . . . . .  , := fo x/-d(-i~dt, yielding a G-mvarlant function on greg,>0 := { a  E 

g~esl~>0}. Given a C g~eg,>0 we proceed to construct a l~-valued map on S 1 by 

g(t) : = -  

t 

1 f4-d )ds, to(a) 
0 

which fulfills g (0 )  = 0, g (1 )  = 1 and g ( t )  = ~ / l o ( a ) .  Thus g defines an element 

of  ~ - - t h a t  even fixes 1 C S z. We compute 

(Ad* (g)  • a )  ( t )  = [ g ( g - I  ( t ) )  ] -2a(g-I  (t))  

= ( l o ( a ) ) 2  1 a ( g  - l  ( t ) )  
a ( g - l ( t ) )  

= ( l o ( a ) )  2 , 

which is a posit ive constant. [] 
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Corollary 23. The O-invariant open cone g~eg,>o in g~g contains only one type of 
orbit, namely G~ RotS 1 and g~g,>O/G ~ •>0. Furthermore, g*g,>O is isomorphic to 
]R >° x ( ~ / R o t S  1 ) as ~-Frechet manifolds. 

Proof Obviously g~eg,>0/G ~ R>°, the isomorphy given by a~ > ( lo(o0)  2. Let now 
ceo C •>0 and g C G, then: 

ao =Ad*(g)  .eeo ¢==> ao = [ g ( g - l ( t ) ) ] - 2 "  t r0 

¢==> g ( s ) = l  VsE[O,  1] 

¢==¢, g E Rot S 1 , 

the subgroup of rotations of Diff(Sl). The last claim follows by consideration of the 

map 

~>0 X ( ~ / S  1 ) ~ g*eg,>0, X(a0,g  sl ) := Ad* (g) "ao 

and its inverse X - l ( a )  = ( ( I0 (a ) )  2, g (a )  • S1), where g(a)  is constructed from a as 
in the proof of the above proposition. [] 

We would like to present explicitly a slightly technical, but later on useful "Sobolev- 
version" of the last proposition. 

Proposition 24. Let a be in Hl'2(Sl,R) (for l >_ 1) and everywhere positive. Then 
there exists a 

g E Gl+l = {h E Ht+l'2(S1, S l ) I h is bijective and h -l  E Ht+~'2(Sl, S I )} 

with the property that 

[ g ( g - I ( t ) ) ] - 2 a ( g - l ( t ) )  = "Ad*(g) • ee"= ( lo (a ) )  2 . 

Proof Obviously, the positive number lo(ee) is well-defined and we can try, mimicking 
the proof of Proposition 22, to set 

t 

1 f g(t) := I0(o------ 3- 
0 

Obviously g(O) = O, g(1) = 1 and g(t)  = x / - d ~ / l o ( a )  > O. By induction g can 
be shown to be in HI+1,2(S I , S1). Furthermore g is bijective and the Lebesgue integral 
conditions on g -  1 follow by general considerations. Obviously "Ad* (g) .  a"  = (I0 ( a ) )  2 
as in the smooth case. [] 

2.3. The "moment" map of the ~-action on the loop space 

Definition 25. The "moment" map of the G-action on X is the application • : X 
g*, y ,  , q~(y), given by q~(y) (s ¢) := - I ~ ( ~ x ( Y )  ) for y E X, ( E g. 
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is smooth. (Note that Hp'2(SI,R iv) is a Hilbert algebra f o r p  > 1 (!) ,  but not 
for/_/0,2 = L2). 

By the Nash Embedding Theorem (see e.g. [Gr])  there exists a smooth 
isometric embedding f : (M,g)  , (RN, go) for N sufficiently big. This f 
induces a map H k ( f )  : Hk'2(S1,M) - ,  Hk,2(S1,RN),TD , f o T, which 
is smooth since its differential is H k ( f . )  : Hka(SI ,TM) , H la (S 1 ,T R  N) 
(see again [K1] ). The moment map of Xk is now realized as q0 = ~0 o H k ( f )  

and thus smooth. 

Lemma  27. The moment map ¢) : X , g* is ~-equivariant. 

Proof Since ~ ( X )  lies in L l (S l , • )  in all cases, the action on g* restricts to r -2 .  The 

result follows now by straightforward computation. V] 

2.4. Summary of  the "classical momentum geometry" 

Before we proceed in Section 3 to analyse special properties of the above defined 

map, we collect some elementary facts about G-equivariant moment maps to have an 

idea what we could ideally expect to hold: 

Proposition 28. Let G be a finite dimensional Lie group with Lie algebra g acting 
smoothly on a finite dimensional symplectic manifold (X, to) and qb : X ---+ g* a map 

fulfilling 
(i) • is smooth and G-equivariant. 

(ii) For every ~ in g the function ~ o qb =: ~ is a Hamiltonian for the fundamental 

vector field ~x on X, i.e. tOx(~X(X), u) = dq~f(u) for all u E TxX. 
Then ¢ is called "G-equivariant moment map for the G-action on X"  and the following 

holds: 
(1) ( D ¢ ) x  : TxX , Tv<x)g* ~ g* is dual to the map 

O'x:g • , (TxX)* ,g ,  , tOx(~X(X),S) .  

(2) I m ( D ~ ) x  = Ann(gx) C g*, where g. is the Lie algebra of the stabil&er G. of x, 

and 

Ker(D~)x  = (TxG. x) / = {v ~ TxX l to(v,u) = 0  Vu E TxG. x } ,  

the symplectic perpendicular to the tangent space of  the G-orbit through x. 
(3) It follows especially that x is a regular point of  ~ iff Gx is discrete and in this case 

T x ( ~ - l ( ~ ( x )  ) = (TxG. x) L . 

(4) Denoting the inclusion of the G-orbit G.  x (for a fixed x E X) by i : G.  x , X, 

we find 

i* o ~*wO = i*w, 
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where too is the canonical symplectic form on the coadjoint orbit 0 = G . ~ (  x ). 

Proof. Folklore (see e.g. [Gu-St] ). [] 

We remark that this proposition holds also for suitable strong notions of symplectic 
manifolds and group actions in the category of Banach manifolds and Lie groups (see 
e.g. [Ab-Ma] ). 

3. Properties of the "moment" map 

3. I. Image and fibres of 

Before going into a detailed study of the infinitesimal properties of ~, we will analyse 
the first global properties of this map. We prepare ourselves with an easy topological 

observation. 

Lemma 29. 
(i) The set {a E C ~ ( S I , R )  I a > 0} is open in C ~ ( S 1 , R )  and its closure is the 

set of non-negative smooth functions. 
(ii) For k >_ 2, the set {a E Hk'2( S 1 ,IR) I ot > 0} is well-defined and open, its closure 

being {a E nk'2(Sl,•)  [ a > 0}. 

(iii) The set {a E LI(S1,R) I a > 0 almost everywhere } has empty interior with 
respect to the L l-topology. 

Proof. The first two assertions follow from the analogous statement for continuous 
functions and the fact that the considered spaces embed continuously into C O (S l , R). 

The third claim follows from elementary properties of the Lebesgue-integral. [] 

* ~ C°°(S 1 , R) be the moment map on the space Proposition 30. Let • • Xoo ~ greg 
of smooth loops. Then the following holds: 

(i) {a >_ O} D q~(Xoo) D {a > 0}. 
(ii) {a > O} is relatively open and dense in ~(Xoo). 

Proof. The left inclusion of (i) is evident. We recall now that, given a smooth, strictly 
positive function t~ on the circle, we find an element g of G such that Ad*(g) - a = 
(/0(a)) 2, the constant given by lo(a) = f~ x/-d(~dt (see Proposition 22 in Section 

2.2). 
Since I0 (~(T) )  = 2-~/2f~ ]]~'(t)lldt is, up to a constant factor, the length of T, it 

suffices to find a smooth immersive, arclength parametrized curve 3' of length x/~lo(a). 
By considering "planar circles" in a coordinate chart of M and covering them 

multiply--if necessary--it follows that the "length spectrum" of the set of immer- 
sive smooth (even nullhomotopic) curves in M is N: >°. This yields the right inclusion. 
Part (ii) follows by the preceding lemma. [] 
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Analogous results hold for Sobolev loops: 
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Proposition 31. Let ¢~ : Xk , Hk-I '2(S1,R) (k > 2) and q~ : Xl 
( k = 1 ) be the moment map. Then the following holds: 

(i) {a E L I (S I ,~ )  I n  _> Oa. e.} = ~(Xl) .  
(ii) {a E Hk-I '2(SI ,~)  [ce > O} D ~(Xk) D {a > O}for k >>_ 2. 

(iii) The set {a > O} is relatively open and dense in q~(Xk) for k > 2. 

, Ll (SI,]R) 

Proof We begin with the case k > 2. By Proposition 24 in Section 2.2 we find, given 
a > 0, a Hk'2-diffeomorphism g of the circle with the property Ad* (g) • ~ = ( lo(a))2 
Taking a smooth loop 9' with q~(9') = ( lo(a))2 we can solve the problem by considering 
the Hk'2-1oop yog. Thus (ii) is proven and (iii) is again a direct consequence of Lemma 

29. 
In the case k = 1 we follow again the same approach. Given a > 0 almost everywhere, 

the definition 

g(t) . -  - -  

! 

1 f 
lo(a) 

0 

yields an element of Hi'2( [0, 1 ], R) fulfilling g(0) --- 0 and g( I ) = !. Taking g as a map 
from S 1 to S 1 and denoting with 9" a smooth loop with the property ¢~(y) = ( lo(a) )  2, 
the loop 9' o g is in Xl and is mapped by q~ onto a. [] 

Turning our attention to the fibres of q~, the "generic" case can easily be settled. 

Proposition 32. Let q~ : Xoo > greg'* Then 
(i) The oh-fibre over a positive constant ao > 0 consists of the set of smooth arclength 

parametrized loops with length 2v/~ or equivtilently energy Oto. 
(ii) The q~-fibre over an arbitrary, positive a E g~g is diffeomorphically mapped onto 

the fibre over (10(a))  2 by Og, where g is an appropriate element of G. 

1 1 . 2  Proof The first statement is evident since q~(9') = ~ 19']] and the second follows by 
taking g as in the proof of Proposition 30 above. [] 

Remarks 33. 
(1) Analogous statements hold for Xk in the case k > 2. To this end, one has only to 

observe that the Hk,2-diffeomorphism g constructed in the proof of Proposition 31 
gives rise to a diffeomorphism "Ad*(g)" of Hk- l '2(s l , • )  and a diffeomorphism 
"Og" of Xk and these two are connected by ¢': 

Ad* (g) o q~ = ~ o Og. 

(2) For k = 1, the nice characterization of the fibres obviously breaks down. 
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3.2. Image and kernel of  DO 

We compute the differential of  • for Xoo and Xk simultaneously. 

Proposition 34. Let ~ : X ..... > g* be the moment map, Y C X and u E T~X. Then we 
have: 

/ V u  t , (D~)~(u) ( t )  =g~(t) ~ " ~ (  ) "~( t ) )  . 

where the RHS is in g~eg = C°°( Sl , • )  for Xoo, in Hk-I'2( S1,R) for Xk with k >_ 2 and 
in L I ( S 1 , R)  for X1. 

Proof Let ~ = f ( t ) d / d t  be in g = C ~ ( S 1 , R )  and ( x  the corresponding "fundamental 
vector field" on X. Defining a smooth curve Ys in X by 

M ys ( t )  := expr(O(s  • u(t))  

we can calculate as follows: 

(D~)v(u)  (~) = d(~ o ~)~(u) 

=-d(~(~x)  )v(u) 

= -u(~(~x)) 
1 

~ g~'.(O ( f ( t ) j , s ( t ) .  7 , ( t ) ) d t  

o 
1 

= ~ "~sg~,,(t) (~/s(t),~'s(t)) dt 
s=O 0 

1 

=12 j f  f ( t )  [2grAt) (--~sYs(t), . s=o d t  
o 

Interpreting Ys as a map 

F :  ( - e , e )  x S  1 ---* M, F ( s , t ) : = y s ( t )  

we find 

~ssYS(t) = Vd/dsF. -~ = Va/atF. -~s + F.  "~s "~ 

(see e.g. [Ga-Hu-La,  p. 144] for the last equation) and thus 
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and this equals V/dt for s = 0. Inserting this last result we find 

1 

V u t ,  t (D<h)r(u)(,) = / f(t)gr(,) (--d-i-( ) , (  )) dt, 
o 

i.e. 

I'Vu,. t'~ (O~),(u) (t) = g,(tl ~--~ ~/( )) • [] 

Corollary 35. Let 7 E X, u E TrX and ~ = f( t)d/dt  E g~ then 

a((o  ~)r(u) = -Co(u, (x(~,)), 

i.e. the smooth function ¢g := s c o 45 is the "Hamiltonian " for the field (x (in the sense 
of Proposition 28)--despite the fact that to has degeneration and the ~-action on X is 
not differentiable. 

Proof Recalling the definition 

1 

co,(u,v) = f ~._d_[ t), v(t)) dt 
o 

for u E TrX, the Hk-l'Z-completion of T~X and v E L( X), the L2-completion of T~X and 
the fact grx (7) (t)  = - f (t) 7( t )  the result follows immediately from the proposition. [] 

For y in X we denote the "tangent space to the G-orbit through y" by 

Vr := {f(t)~/(t) I f E C ° ° ( s l ( R ) }  

and remark that V~, C TrX~ for y E X~ and V:, C TrX, the Hk-l'2-closure, for y E Xk. 

Corollary 36. Let y be in X, then 

ker(D~): ,  = (Vr) z :={u E TrXlto(u,v) = 0  Vv E Vr}. 

Proof Let u E ker(D¢~) r and v = f(t)~,(t) E V r. Then 

1 

co(u,v) =/gy(,l  (~ t  (t), f(t)~'(t)) dt 
o 

I 

= I f ( t )  [g~/(tl(~t ( t ) , j / ( t ) ) ld t  
o 

1 

= / f(t) [(D~)~(u) (t)] dt. 
0 
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Now the claim follows immediately. [] 

We remark that the preceding two corollaries indicate that • behaves pretty much as a 
classical moment map. This is further underlined by the following observation and will 

be confirmed by the consideration of the image of ( D ~ ) r  below. 

Lemma 37. Let  • : Xoo 

i* o (P'too = i ' to ,  

> gr*eg and y be a smooth loop, then 

where i : G • T > Xoo is the inclusion of the orbit and too is the canonical symplectic 
structure on (9 = ~.  qb(?,). 

Proof Let ~ = f ( t )d /d t ,  n = h(t)d/dt  be in g and recall [sc, r/lg = ( fh  - fh)d/dt .  
Thus the canonical symplectic structure on (9 is given by 

too (~,  ~7) ( ¢ ' ( ? ' ) )  = q ' ( x )  ( [~:, 771 ) 
1 ' /  = ~ ( fh  - fh)[IJ'(t)112dt, 

0 

where I[~(t) II 2 is used for gr(t) (~/(t), j,(t) ). The 2-form to of X~  restricted to the orbit 

G" y reads as 

1 

V (hS/)) dt. to(,x,nx)(?,)= f gr(,) (-f,,--g 
0 

1 

= f { fh[JJ/JJ2+ fhg~,(t) (*, -~t ) } dt 
o 

1 

0 

1 ,/ = ~ { f h .  2 - fh  - fh}  ll4/ll2dt 
o 

= t o o ( ~ , n ) ( ' ~ ( e ) )  • [ ]  

In order to find the image of the differential D ~  we recall the construction of the 

"d6veloppement de Cartan" (see [ Ca] ): 
Given a curve 3' : [0, 1] = I ----* M, let Prl~ denote the parallel transport along 7, 

which is an isometry between T~,(t)M and Tr(,)M. For the sake of brevity we denote 
Prl~ by Pt in the sequel. We call the curve of "velocities" Pt -1 ( j , ( t ) )  in Tr(o)M y(t) 
and set x(t) := foY(S)ds.  This curve x in the euclidean space (T~(o)M, gr(o)) is called 
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the "d6veloppement de Cartan". We can establish an isometric isomorphism between the 

vector bundle y*TM with the metric y*g and the trivial Tr(0)M-bundle over I with the 

constant metric &,(o) by mapping ut E (y*TM), = T~,(t)M to et- l (ut)  E Ty(o)M. This 
induces an isomorphism 

F(I ,y*TM) , Map (l,  Tr(o)M), u, , u, 

where u(t)  := Pt -1 (u ( t ) ) ,  with the property that the covariant derivative XT/dt on the 

former space is identified with the ordinary derivative d/dt  on the latter. 

This yields already the notable result that y is a geodesic iff x is a piece of  a ray 

through 0. 

In case y is closed we have a distinguished operator P1 : Tr(o)M ----* Tr(o)M and 
the condition u(0)  = u(1)  for u C F(1,y*TM) reads as P l ( u ( 1 ) )  = u(0) for u C 

Map(I ,  Tr¢0)M). 
For a loop y E X and u E T~,X= {u E F(I ,y*TM) l u(0)  = u (1)}  the differential of  

was in Proposition 34 calculated as 

/Vu t) ) (DqS)y(u)(t) =gz,(O ~--~-( , ~,(t) , 

yielding the equivalent expression £ ( t ) u ( t ) ,  for x being the d6veloppement de Cartan, 

u in Map( l ,  Tr(o)M) such that P1 (u(1)  ) = u(0) and "." denoting the scalar product 

gr(o) on Tr(o)M. 

Proposi t ion 38. Let 9' be an immersive element of Xoo. Then the differential of q~ in y 
(i) is surjective onto g*eg i f  y is not a geodesic, 

(ii) has a one-codimensional image if y is a geodesic. 

Proof. Ad (i) Given a E C ~ ( S I , R )  we seek u C C°°(I, Tr(o)M) such that .t • 0 = a 

and P~ (u(  1 ) ) = u(0) .  The Ansatz 

v(t)  := (s)ds 

o 

reduces us to the following problem (*) :  

v, := fo' (*~/11~112) (s)ds, find w C C°°(I, Tr(o)M) 
i x .  

Given such that ± . w = O  and 
w( I ) - PI - l  (w (O) )  = vl .  

Having solved ( . ) ,  the map u := v - w fulfills 

± . 0 = . t . q = a  

and 

P l ( u ( 1 ) )  = P 1 ( v ( 1 ) )  - P l ( W ( 1 ) )  = - w ( O )  = u(O) ,  

i.e. (D~)~(u)  = a. 



368 T. Wurzbacher/Journal of Geometry and Physics 16 (1995) 345-384 

In order to solve ( , )  we consider the vector space H := {h : I ~ T~(o)M I h is 
smooth, h(0) = 0 and h(z) 3. ~(t) Vt} and the linear map J : H ~ T~(o)M, J(h) := 

f l  h(s)ds. 
We make the following claim: 
J is surjective. (**) 

To prove (**) we observe that since 3, is no geodesic, x is not a straight line and 
we thus can find two points tl,t2 E (0, 1) such that (±( t l )  -L) + (±(t2))  -L = T~(o)M. 
Given now a point Vl in (±(tl)-L), the g~(o) perpendicular to ±( t l )  in T~(o)M, we 
find an element h E H that approximates "vl times the t~-measure in t l" arbitrarily 

good as a measure. Thus ][J(h) - viii can be made arbitrarily small. Since J is linear 
its image is a linear (and automatically closed) subspace of T~(o)M and therefore the 
above argument implies that 5c(tl )_L (and by the same argument ±(t2)_L) is contained 
in Im J, yielding (**). 

Now, taking h E H such that J(h) = Vl, vl as in problem ( , ) ,  we define 

t 

w(t)  : = / h ( s ) d s  

0 

and find ± - w = O  as well as w(1) =v l ,  w(O) = 0  thus solving ( , ) .  
Ad (ii) We claim that in this case 

I m ( O ¢ ) r  = {ee E C~(S1 ,~)  I f~ o~(s)ds=O}. 

For the sufficiency of the condition on the mean we note that--defining the constant 
(!)  vector n := Jc, the velocity of x-- the first Ansatz in (i) 

u(t)  := a(s)ds [in[12 

already solves the problem ±. t) = a, P l (u (1 ) )  = u(0). 

Assuming now that ( , ) ± .  u = a for u E C~(I ,  Tv(o)M) such that P l (u (1 ) )  = u(0),  
we denote by u II (t) and u -L (t) the parallel and perpendicular part, respectively, of u with 
respect to n. Since 3' is a geodesic 5' is parallel and especially P1 (~,(0)) = ~(1) = a/(0). 
Therefore P1 respects the decomposition in parallel and perpendicular parts of any vector 
in Tv(o)M. 

This gives the equations 

P l ( u l l ( 1 ) ) = u l l ( 0 ) ,  P I (u 'L (1 ) )=u -L(0 ) ,  

showing that u II already solves ( . ) .  Replacing u by u[I and representing it as fl(t)n 
one finds ~( t) = ~( t) /llnll 2 and thus 
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u(O)--B(O)n and u ( 1 ) =  a(s)ds  i i - - ~ + B ( O ) n .  

The boundary condition Pl (u (1)) = u(O) is now equivalent to f2 a(s)ds  = 0, since 
P1 (n) = n. [] 

Remarks 39. 
( 1 ) We remark that the same lines of proof give the same results for the moment map 

q~ : Xk ~ Hk-l '2(Sl ,~)  for k > 2, 

since Ht'2(SI,R) is a Hilbert algebra for l > 1. Again the case k = 1 is not 
well-behaved. 

(2) Unfortunately propositions 31 and 32 in Section 3.1 as well as proposition 38 above 
give only sufficient information about the "generic case", i.e. immersive loops. The 
behaviour in general, notably the description of the set ¢~(X) N (boundary of {a _> 
0}) seems to be as interesting as difficult to access. 

(3) We would like to stress the close analogy to the classical momentum geometry 
we have encountered so far ( Corollaries 35 and 36, Lemma 37); most notably 
the following one: Since for immersive y the isotropy subgroup in ~ is finite, the 
isotropy subalgebra g~ is trivial. This suggests by Proposition 28 the surjectivity 
of the differential, which is indeed a fact for non-geodesic curves and violated by 
codimension one for geodesics. This latter gap can be explained by the observation 
that y is geodesic iff 5' is in kern ea:, (see below for finer aspects of the infinitesimal 
relations between q~-fibres and the orbits of ~). 

3.3. The relation between F-orbits and the "moment" fibres. Symplectic reduction 

To simplify statements and calculations in this section, we introduce (recall) the 
following (bunch of) notations: Let y be a loop, then 

9 " y =  { g - y l g c ~ } ,  

Gr = {gG G I g - r = ~ } ,  

O~, := 9 .  ' / ' (y),  
,/,~, :=,/,-1 (q,(9,)), 

Vr = {fs,  I f E C°°(SI ,R)} C TrXoo resp. TrXk 

(the closure with respect to Hk-l'2-topology), 

N r = kern ea r C TrX, 

K r :=kern(D,/~)~, C TrX, 

Rr := ((5,)) a C V~. 
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Lemma 40. Let 3/ be an immersive element of Xoo, then ~ . 3/ M ~ ,  ~_ S I. 

Proof. Let g be in G such that g- 3/is parametrized by arclength ("p.a.l." in the sequel). 
Then G" 3/= ~" (g" 3/) and ~ is diffeomorphic to Og(~ r) = ~g.~, thus we are reduced 
to the case that 3/is p.a.l, and hence ~ ( y )  = a0 is a positive constant and 

'/~:, = {3/~ Xoo [ 115'(0112 = 2a0 Vt} .  

The equation 

11(3/o g ) ' ( t ) l l  2 - - [ 1 5 , ( g ( t ) ) l l  2 • Ig ( t ) l  2 

along with the fact that Ig(t)l  2 -_=_ 1 iff g E RotS l implies 

G . y A q 0  r = (RotS l) .3/. 

The last RHS is a circle, since y is non-constant. [] 

We remark that, again working with appropriate Sobolev diffeomorphisms, the lemma 
holds for k > 2. 

Proposition 41. Let y be an immersive element of Xoo, parametrized by arclength. 
Then the following holds: 

(i) Vr n K~, = R,. 
(ii) If Y is a closed geodesic, V r + V~ = TrXoo. 

(iii) If 3' is not a closed geodesic, 

(Vr + Vr z)  @ ( ( J ~ ) ) ) R  = r~xoo. 

Furthermore, in this case, we can find a one-dimensional, locally closed subman- 
ifold S~ C Xoo such that 

(v, + v~) ~ r ,s ,= r, xoo. 

(iv) K¢ = Vr + N~,, K~ M K¢ = Ry + N~. 

Proof. For the proof we introduce further shorthands: 

,~o :=~ ' (3 / )  = ½11~,112 , 

u . v := g~,(t) (u( t ) ,  v( t )  ) , 

for u, v E TrXoo and we denote Vu/d t  by ti, e.g. ~/ = ~7~/dt. 
Ad (i) Recall that 

V . = Vt / V, M K , = { f , [ f  E C ° ° ( S ' , , ) a n d ~ / . ( - ~ f 3 / )  0 , . 

Since 3/is p.a.l, we have ~,(t) • ~ = 0 throughout and thus 

~" ~ I Y  = fll~,ll 2 + f j , -~ ,  = 2fot o. 



T. Wurzbacher/Journal of Geometry and Physics 16 (1995) 345-384 371 

Thus f j '  is in K r = Kern(D¢~) r iff f is constant. 
Ad (ii) For y immersive, the bundle y*TM is the direct orthogonal sum of  two 

smooth subbundles 

y*TM = ((~,))  @ ( ( ' j , ) )±  , 

where 

( ( ' j , ) ) ,  := ( ( ~ ( t ) ) )  R C (y*TM)t = Trft)g 

and the orthogonal complement is taken with respect to the metric y*g on y*TM. This 

yields a decomposition into closed ( l)  subspace: 

F coo ( sl , y * rM ) = Fcoo ( S ~ , ( (~ , ) ) )  @ Fcoo ( S' , ((~,))_L).  

Given now y a closed geodesic and w E TrXoo, we decompose the latter according to 

the above direct sum w = a $ t + u ,  where a E C°°(S1,R) and u(t) . y ( t )  =0 for all t. 

Since a5' is in Vv it is sufficient to show that u lies in VyZ: 

1 

~o(u,f$t) = - / { f ( u . y )  + f ( u .  
i ,  

~,)}dt O, 

o 

since u-  5, = 0 and y = 0, y being a geodesic. 
Ad (iii) Let us recall that N r = Kerno~ r = Kern(V/dO (see Lemma 11 in Section 

1.4) and that 9' is thus geodesic iff 5, E N r. Furthermore we denote the operator J r  by 
J and recall ~or(u, Ju) > 0 for all u E TrXoo \ N r (see Lemma 13). Thus in the case 

at hand we have (o~ := oJ r here) 

o~(5,, J~,) > 0 .  

The single linear equation 

w('j,, w) = 0  (for w E TrXoo) 

defines a one-codimensional closed subspace in TrXoo. It follows that 

TrXo ° = ($,)Z ~ ( ( J$ ' ) )R  • 

Our strategy is now simply to show the following, which is obviously sufficient: 

(~ , )"  = v~ + vr z . ( , )  

To prove the inclusion of  the RHS in the LHS, note that obviously V~ C ( y ) / .  

Let now f y  be in V r, then 

1 

= - / ~/. f$,dt = O, 
# 

o)( ~, f$) 
o "  

o 
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since y is p.a.l. Thus Vr is contained in (~,)z as well. To show the inclusion of  the LHS 
in the RHS, let w in (~,)z be decomposed as 

w = a ' ~ + u ,  

where a E C ~ ( S I , R )  and u(t) . j , ( t)  = 0  for all t. 

Since w is in ( T ) z ,  the mean value of  the function u • $ is zero. Thus the function 

b(t) := ( 1 / 2 a o )  fo u(s) • ~/(s)ds is a smooth function on the circle (~_ [0, 1 ] / ,~ ) .  We 
define v := u + b5, and claim 

. E v ( .  (**) 

Calculating we get 

1 
/ I  

f~/) = - / f ( t i .  "~ o.) ( u ,  2aob ) dt + 
J 

0 

1 

= - / f ( - u .  ;f + 2aob)dt, by integration by parts 
* 7  

0 

= 0, by the definition of b. 

Thus (**)  is proven. Collecting loose ends, we find 

w=a~, + u = ( a -  b)~ + v 

with a,b E C ~ ( S I , R )  and v E VT z.  Thus every w E (~,)L is contained in V r + V~, 
which proves the first part of  (i i i) .  

Since 9' is not a geodesic we can find a e > 0 and a family {~s(t)  I Isl < ~} of  
smooth immersion such that ~/0 ( t )  = 3'(t)  and 

dL(C/s)/dsls-.o ~ O, 

where L denotes the length of  a curve. Going through the standard procedure of  
reparametrization by arclength, but keeping track of the dependence on the parame- 
ter on the parameter s, we find a smooth map G : ( - e ,  + e )  x S 1 , S l such that 
Gs = G ( s , . )  is a diffeomorphism of  S t, Ts(t)  := ~,s(G(s,t)) is parametrized by ar- 
clength and T0(t)  = 9"(t). It follows that L(9'~) = L ( ~ )  and especially 

dL(e,)/dsls-.O o. 

We take the image of  the family Ts in X ~  as the slice S r. Since (D~r)(T~S r) is 
transversal to the orbit ~ .  q~(T) = Or in gr*eg, TrSr is transversal to V r + K r = V r + VT z ,  
thus giving the desired direction and completing the proof of  (iii) .  

Ad ( iv)  Let w in K (  be decomposed as w = aS,+u, where a C C ~ ( S I , R )  and 
u(t) • ~,(t) = 0 for all t. As above we define a smooth function 
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t 1/ 
b(t)  = ~ o  u ( s ) .  ~'(s)ds.  

0 

The assumption implies 

1 

b(1)  - b ( O )  = ~ o  ~(s )  . u ( s ) d s =  to (~ , , )  =0 ,  

0 

since w E K~ z C ( y ) z .  

Defining v := u + / ~ ,  we find for k E K~, 

to(k, v) = to(k, u) + to(k, b$/) 

= to(k ,u)  , 

= to(k, w) , 

= 0 ,  

since V r c K~ 

since V r C K~ 

by assumption. 

373 

and 

K,  n K :  = V, L n ( V,L ) L = ( r , X ~  ) L = N~ . 

We stop here and set c = 0, z = v. 

In the case $ q: 0, we had 

to(S,, J$/) = d ~ 0 

(v, + v:). ((J~'))R = T, Xoo. 

We define here c := to(v, J~/) • l i d  E R and z :-- v - c~. A quick calculation yields 

z ~ v ~  n ( v ~ ) "  n (J~,)"  = (T~Xoo)" = N~. 

Thus in both cases z C N r and 

w = ( a - b + c ) $ , +  z C Vr+ N r.  

The second formula K r M Kr z = R r + N r follows from the first and (i).  

Remarks 42. 
(1) Thinking in terms of  the energy 

1 

a ( y )  = ~ [[5,(t)[12dt, 

o 

[] 

Furthermore to ( f '~ ,v )  = 0  for all f ,  i.e. v E Kr L and v C V~, short v E KrMK~.  In the 

case "~ = O, we found in (iii) that Vr + V~ = TrX~ and thus 
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which is proportional to length on S~,, the transversal direction to Vr + V~ (in a 
non-geodesic point y) is given by (VH)~, where the gradient must be taken with 
respect to an appropriate Riemannian metric on X. 

(2) The above results (Lemma 40 and Proposition 41) lead to the following geometric 
picture: Given a non-geodesic, immersive curve y (parametrized by arclength), the 

intersection of the orbit G • Y and the fibre ~ r  is exactly the orbit of y under the 
circle group (Rot S l ). The tangents to this space (Rot S 1 ) • 7 are the degeneration 
direction of to restricted to the orbit, while on the other hand this direction R~ plus 
the degeneration space Nr of to form the degeneration directions of to restricted to 
the fibre. 

(3) Going through Proposition 41, it follows immediately that (i) and (ii) are valid for 
Xk, k >_ 2. Since Vr does not sit in TrXk, but rather in T~Xk, the Hk-l'2-completion, 
for general 7 the assertion (iii) and (iv) can hold only in modified versions for 
Xk. 

We recall that the "reduced space with respect to the orbit Or = G" a C g*" is 
set-theoretically defined as 

go := q'-~(O~)/G ~_~-~(a)l~, 
where G~ denotes the isotropy group of a. This space carries in "good cases" a sym- 
plectic structure 6) or a Poisson structure (see [L-S] for the state of the art in the case 
of proper actions and finite-dimensional groups and manifolds). 

In our case we can--for a E greg and strictly positive--assume that a is a constant 
c~0 E ~>0, since we know a bit about the coadjoint action (Propositions 22 and 24). 

The following proposition follows: 

Proposition 43. Let ao be in R >° C g~'eg. Then the reduced space X~.~ o is 

{T E Xoo I Y is immersive and L(y )  = 2x/~o}/G 

{Y E Xoo I Y is immersive, p.a.l, and L(T) = 2V~0}/'~tp, 

where 7J ~lP Y2/ffYl and T2 differ only by the choice of the initial point. These sets are 
in turn isomorphic to the set of  unparametrized immersed arcs of length 2x/~. Further- 
more the "tangent space" of [Y] is given by Kr /R r and contains as its degeneration 

subspace 

Kern w[~,l = N~,/Rz, N N r . 

Proof The assertions follow from the fact ~,,0 = Rot S l and the above proposition. [] 

Proposition 44. Let oto be in R >° and assume that ( M, g) does not contain a closed 
geodesic of  length 2x/~. Then the reduced space Xk,~o ( k > 2) is a "generalized 
Hilbert manifold", in fact a Hilbert manifold modulo a continuous, almost free circle 
action equipped with a "symplectic structure". 
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Proof By Proposition 38, ~--1 (t:l[0) is a smooth Hilbert manifold. Since all curves in it 
are immersive G,~0 = Rot S 1 acts almost free on it. The "symplectic structure" on Xk,,~0 is 

given by to restricted to T~ -1 (a0) since ~,, the generator of Rot S 1, is to-perpendicular 
to Tr~ -1 (ao) .  [] 

Remarks 45. Summarizing the facts collected on # and D ~  it is fair to say that in 
the immersive points the classical momentum geometry sustains despite the facts that 
(1) to is only a degenerate, weakly-symplectic form and 
(2) the F-action is neither proper nor differentiable in the strong sense used in the 

Banach category. 

This allows for the hope to study successfully finer properties of the image of # as well 
as of the reduced spaces, having in mind the goal of understanding classical mechan- 
ics on the space of unparametrized curves ("closed bosonic strings") in Riemannian 

manifolds. 

4. Further remarks 

4.1. Reduced spaces of loop spaces and spaces of closed geodesics 

Given a G-manifold, i.e. a Riemannian manifold with the property that all geodesics 
are periodic with the same least period l, it is known that the tangent bundle UM allows a 
free S l-action, generated by the energy function on TM, and the quotient CM := UM/S l 
is the manifold of oriented geodesics on M. This space is the symplectic reduction of TM 
equipped with the canonical symplectic structure of the tangent bundle of a Riemannian 
manifold with respect to the above Hamiltonian circle-action (see [Bess] for all this). 

We identify a point v E UM with the geodesic 9/v starting in 7r(v) E M with initial 
velocity v. The tangent space to [9/] E CM is the space of normal Jacobi fields along 
9/, i.e. Jacobi fields J with the property that J and VJ/dt  are perpendicular to ~, in all 

points of 3/. 

Lemma 46. Given a Cl-manifold ( M,g), the space CM is symplectically embedded in 
the reduced space Xt2/2 = ~ - l  (12/2) / R o t S  1. 

Proof The map from CM to XIV2 is induced by mapping v E UM to the geodesic 
9/v (with length 12/2). This map is equivariant with respect to the two circle actions 
involved. 

A normal Jacobi field J satisfies 

V J  
(Dqb)r( J) = g~(t) (~'(t), ---~-(t)) =O 

and J is not a multiple of 5' since J(t) is perpendicular to ~(t)  for all t as well. Given 
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now two normal Jacobi fields Jl, J2 along y the symplectic form of CM reads: 

<or (J~ ,J : )=g J ~ , - - ~ j - g \ - - ~  J: , 

where the RHS is constant in t (see [Bess, p. 58] ). 
This obviously equals 

l 

i (VJI(t) ) - 2  gr(,) \-'-~- ,J2(t) d t=-2&tr] ( [J i ] , [J2] ) ,  

o 

the symplectic form of Xr2/2 (up to the constant normalizing factor -2 ,  see Proposition 
44). F-q 

We would like to point out that this observation resulted from a conversation with 
A. Reznikov. 

4.2. The action of the isometry group of (M,g) on the loop space 

As we remarked in Lemma 5 in Section 1.3, the isometry group H := Isom(M,g) acts 
smoothly on the loop space, the action commutes with the g-action and/z is H-invariant. 
This provides us with a H-moment map ~tt : X ~ h* by contraction: 

• .(3,) (~) :=- jz (nx(~) ) .  

Rather than developing the study of this map in general, we will only point out an 

interesting example: 

Lemma 47. Let ( M, g) be R d with the flat metric and rl be the generator of the rotation 
in the plane E. Then 

• .(~,) (n) ,  

for y in the loop space of R a, equals the signed area of the domain in the plane E 
circumscribed by the projection of T to this plane. 

Proof. Let us assume for simplicity that ~ is the rotation in the (1,2)-coordinate plane 
and denote the projection of ~ to this plane by Yl,2. 

A direct computation yields 

7/X( '~)  ---- ( ' ) # 2 , - - Y l ,  0 . . . . .  0 )  , 

where we identified TrX with X ~- (C°°(SI ,R))a.  Now 
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a~.(~) (7) = -/z(~x(~) ) 
1 ,/ = - ' ~  g~,(O (r lx (T) ( t ) ,  ~/(t) ) dt 

0 

1 

= - T~,2(xldx2 - x2dxl ) 
2 

0 

where xj are the coordinate functions on R a. By Stoke's theorem the last expression 
equals the signed area of the domain circumscribed by ~1,2 in N 2. [] 

This seems to be interesting for Riemannian geometry for general d, but especially 
ties in with symplectic geometry for even d: Restricting to the subgroup U(d)  of 
symplectic isometries implies that we measure only projections to symplectic planes (in 
fact complex lines). Considering now subsets /2 of R 2d and appropriate sets /:/'2 of 
closed curves, which especially do not contain multiple coverings of a closed arc in/2, 
one can extract invariants like 

inf (~s~p ~H('y) ( r / ) )  , 
~u<d),ll'711--~ 

that should relate to other invariants like symplectic capacities. 

4.3. Geometric quantization of  loop spaces 

Having described the classical aspects of the symplectic structure of loop spaces and 
the reparametrization action it is quite natural to ask for the (~-equivariant) geometric 
quantization of it, aiming for a geometrical derivation of "quantized string theory". (In 
fact this was the main motivation for this work.) 

For special targets like flat (Minkowski) space and compact semisimple Lie groups 
this was attempted the first time by Bowick and Rajeev [Bo-Ra]. Later work of Mickels- 
son [Mick], Popov and Sergeev [Po-Se] and others clarified (and almost algebraized) 
the subject. But all these works have a serious gap in the question of how to define 
measures and square-integrable functions on loop spaces. To leave the realm of partly 
formal calculations it is absolutely necessary to solve this problem. 

In the case of arbitrary target (M,g)  a second problem arises, since it is not at all 
clear how to find polarizations (in the sense of geometric quantization, see e.g. [Wo] ) 
and enough polarized, integrable functions on the loop space. 

4.4. Symplectic description of  nonlinear Sigma-models 

Classical nonlinear Sigma-models (for short o'-models in the sequel) in their simplest 
form have the set of maps from a fiat cylinder to an arbitrary Riemannian manifold as 
configuration space and the harmonic map equation as its (field) equation. 
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Motivated by the fact that the geodesics of a Riemannian manifold can be cast in 
a useful Hamiltonian frame (see below) we look for an analogous interpretation of 
o'-models. The solution in turn gives a classical "explanation" for the appearance of 
equivariant Laplacians rather that Laplacians in the (partially heuristic) quantizations of 
o'-models. 

Proposition 48 (Folklore). Let (M,g)  be a Riemannian manifold and ~b : TM 
T*M the isomorphism given by the metric. Denoting the pullback of the canonical 

2-form on T*M by tog we have a bijection between: 

(i) integral curves y(s)  of  the Hamiltonian dynamical system (TM, tog, H), where 
H ( y ) = ½g(y,y), with initial conditions y(O) = (q ,p)  E TM ( p E TqM ), and 

(ii) geodesic curves y = y(s )  in (M, g) with initial conditions y(O) = q E M, y'  (0) = 

p ~ TqM. 

Proof See e.g. [KI]. [] 

Let us denote in this section by X the space of smooth loops in M. Recall that we defined 
the "good" cotangent bundle T* X = C ~ ( S 1 , T ' M )  with fibres 7~X = Fc~ ( S l , y*T*M). 
We let 7r : T*M ~ M be the canonical projection a n d / / :  ir*x ~ X , / / ( a )  := ~'o a 
the induced projection. As in the usual case we find a canonical 1-form on iP*X: 

1 

(0)at  (gra,) := f ( ay ( t ) ,  ( H , ) a , ( ( a , ) ( t ) )  dt ,  

0 

where 

a~ E 7";X, g~, E T~,(~*X) =Fco~(Sl,a~r(r*M)) 

and ( , ) denotes the natural pairing between TqM and TriM (q E M).  Defining 
= - d 0  we get a closed, non-degenerate 2-form on ~*X. 
The metric g gives us a canonical smooth bundle isomorphism 1/, : TX ~ ir*x over 

Idx by mapping u E T~X to g ' (u ) ( t )  = (• o u ) ( t )  = gr(t)(u(t) ), .). 
Finally, we define, again quite in analogy to the usual case, tog := g'*~, the canonical 

symplectic structure on TX. We would like to remark that Atiyah observed that X is 
symplectically embedded in lr*x by the 1-form/z--or  in our language in TX by the 

vector field ( ( y )  = -'k- 
Mimicking the above proposition we proceed to the natural Hamiltonian Ho : TX 

IR, Ho(u) = ½ (u,u) o, the fibre norm on TX given by the "L2-metric ''. 

Lemma 49. Given a Riemannian manifoM (M, g) and its smooth loop space X we 
have a bijection between 

( i ) integral curves y = y ( s ) of  the dynamical system ( TX, ojS, Ho ) with initial values 

y(0)  = ( y ( 0 ) , u ( 0 ) )  = (yog, uo) E TX, 
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(ii) geodesics ~'(s) o f  the L2-metric on X with initial values ~,(0) = ~'0, ) / ( 0 )  = uo, 

and 

(iii) maps f ( s , t )  : ( - e , e )  × S 1 ~ M with the property that f is geodesic in s for  

fixed t and f (O,  t) = ~'o(t), af/Os(O, t) = uo(t).  

Proof. 
Step 1. The description of  tog: Since the tangent bundle of  TM splits into the vertical 

bundle, V := Kern(zr ) . ,  and the horizontal bundle H given by Levi-Civita connection 
V of  the metric g we get induced splittings 

Tu, ( TX) = F c ~  ( S 1 , u~TM) 

= F c ~  (S l , u~H) @ F c ~  (S ' ,  urV) 

(and similarly for T,~, (7 '*X)) .  
Given now w @ v, wP@ v' C Tu~(TX) with w, w' horizontal and v,v '  vertical, a 

computation with coordinates of  M yields 

to (w v,w' = ( w , . ' )  o - ( w ' , . )  o 

Step 2. Calculation of  the Hamiltonian equations: We describe the Hamiltonian field 

~:n0 in u r E TX as ~:n0(u r )  = a ~ b E Hu, @ V~, and recall 

( dHo)u,(  W @ v) = tog( a @ b, w @ v) 

= (a,V)o - (w ,b )o .  

Standard calculations, using the canonical Riemannian metric on TM and its expo- 
nential map, give the result 

(dHo)u , (w  ~ v) = (ur,V)o 

and thus 

(no(U r)  = u r @ 0.  

Thus we find the following equation for an integral curve y ( s )  for ~:m: 

y ( s )  ~ 0 = ¢Ho ( y ( s ) )  = y ' ( s )  

= ( y ' ( s ) ) H  • ( y ' ( s ) ) v ,  

i.e. y ( s )  = ( y ' ( s )  )n  and 0 = ( y ' ( s )  )v. 
Step 3. Bijection between (i) and (iii):  Given a solution of  (i) we project it to X to 

find a curve y ( s )  = 7r o y ( s )  with 

y l ( s ) = ( J ( s ) ) ~ = y ( s )  and y ' ( s ) = J ( s ) = y ( s ) @ 0 ,  

thus y ( s )  fulfills 

0 = ( y " ( s ) ) v  = V~/~sy ' ( s ) ,  
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i.e., T(s)  is a geodesic in M with respect to the parameter s. Defining f ( s ,  t) := 

~,(s) ( t)  we find the desired map. 

Let now a map f : ( - e ,  e) x S 1 ~ M be given such that the curves ~,(s)( t )  := 

f ( s , t )  are geodesics in s for fixed t. Setting y(s )  := Tt(s)  we get a curve in TX. 

Differentiating it follows that 

y'(s) = ~/'(s) = (~/'(s) )n • (~/'(s) )v ; 

the second term is zero by assumption on 3'(s) and thus ( Y ( s ) ) v  = 0. On the other 

hand, we have (y~(s) )n  = y (s )  since y is a tangent curve to a curve 3~ in the base 

X. Collecting the results we have 

y' ( s) = ~no(Y( S) ) . 

The statements on the initial values are obvious. 

Step 4. Bijection between (ii) and (iii): To this end we calculate the geodesics of  the 

L2-metric on X: Let y : I = [a,  b] ~ X be a curve in X and 

b 1/ 
E0(r) :=~ (r ' (s ) , r ' (S))odS 

a 

, ) ,/ = g gr(s)(,) (T ' ( s ) ( t ) , ' y ' ( s ) ( t )  dt ds 

the energy with respect to the L2-metric ( , )0' Let now U be a vector field along ~, 

with U ( T ( a ) )  = 0 = U(~,(b)) and Exp(eU)  the variation of  7 in direction U, i.e., 

Exp(eU) (t)  M = expy(s) (t) (eU(s)  ( t ) ) .  

Standard calculations yield the following result: y = y ( s )  fulfills 

d Eo(Exp(eU))  VU 
0 = ~ = o  

Va/~y ' ( s )  =0 Vt. 

Thus the bijection between (ii) and (iii) is shown. []  

We would like to remark that--as  J. Jost pointed out to us - - the  equivalence between (ii) 

and (iii) is a special case of  a result of  D.S. Freed and D. Groisser IF-G, Appendix].  

Lemma 49 is not at all sufficient from the point of  view of  o'-models since it does 

not involve any derivatives of  f with respect of  t. To this end we will add a second 

term to the Hamiltonian, namely 

Vo(ur) := -½ (~', ~')0 , 

the energy of  the projection o f  u~ E TX to X. 
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Again a calculation with the exponential map of TM yields the Hamilton field: 

(Vo(y(s) ) =O~ (--~Ta/ot ( ~ ( ~ r °  y(s) ) )  ) 

and thus the Hamilton equations: 

( y ' ( s ) ) H  = 0 ,  

( Y ' ( S ) ) v = - V o / o t ( ~ ( r r o Y ( S ) ) ) .  

Adding Ho and V0 up to the new Hamiltonian H1 := Ho + I,~ we find 

Proposition 50. Given a Riemannian manifoM (M,g) and its smooth loop space X we 
have a bijection between: 

(i) integral curves y = y( s) of the dynamical system (TX, cog, H1 ) with initial values 

y(O) = (y(O),  u(O)) = (To, uo),  

and 
(ii) harmonic maps from the flat cylinder (-~,  e) × S l to the Riemannian manifold 

( M, g) with initial conditions 

3-~f (o,t) = uo(t). f(O, t) = y0( t ) ,  as 

Proof The Hamiltonian equation for Hi reads: 

y'(s) = y'(s) H @ y'(s) V 

=(n,(y(s)  ) 

=y(s) @ (-Va/ot ( ~ ( r r o y ( s )  ))  ) , 

i.e., 

and 

(y' (s) )H = y(s) 

(y ' ( s ) )v=-Vo/o ,  ~ ( ~ r o y ( s ) )  . 

Thus, given a solution y(s),  the projection y(s )  = ~r o y(s), fulfills: 

y ' ( s )  = (y ' (s))n 

and thus 

y " ( s )  = (y'(s) )'H = y'(s) 
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yielding 

Va/as'y'(s) = ( ~ / ' ( s ) ) v  = ( y ' ( s ) ) v  = - V a m S ' ,  

i.e. 

Va/at'Y + Vo/asy I = O. ( , )  

Interpreting y as a map 

f :  ( - e , e )  × S' ---+ M 

and giving the cylinder the canonical flat metric (*) is equivalent to the harmonic map 
equation 

trace XTdf = O. 

Conversely, given a harmonic f ,  retracing the above argument in the other direction, we 
find that y := 7' is a solution of the dynamical system associated with H1. [] 

Remarks 51. 
( 1 ) The Hamiltonian 

= ½ <u ,u,lo - 

carries a seemingly surprising relative minus-sign in view of the energy 

1 ( Of 2 Of 2~ 

whose minimizers are the harmonic maps. Its appearance can be explained in 
terms of classical field theory: Consider the maps from the circle to (M,g)  as 
the set of fields and let Hi = H0 + V0 be the Hamiltonian governing the field 
equation. Now Hamilton's principle asks for extremizing the integral over the 
Lagrangian fb  a L(y ,  yl, s)ds for given y(s )  and y(b) ,  but L equals "kinetic energy" 
- "potential energy" in contrast to the Hamiltonian H, the "total energy", which 
equals "kinetic energy"+ "potential energy". Thus one should minimize H0 - V0, 
i.e. one looks indeed for harmonic maps. 

(2) Attempting to quantize the o--model, many authors consider (Rot S l)-equivariant 
Laplacians on loop spaces as the "right" operators (see [Benn] and the references 
therein), especially since these seem to be more likely to be rigorously definable. 

Hoping naively to apply geometric quantization to the triple (TX, tog, H1), a 
good candidate for the polarized space of sections, the quantization of (TX, tog), is 
L 2 (X) with respect to an appropriate measure. The Hamiltonian 

n,  = I-/o + Vo =  II,,II - - ll II 
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consists of two terms: the fibre norm H0 of a tangent bundle, which should give 
rise to the "normal Laplacian", and the "potential term" I~, which is the generator 
of the (Rot S j )-action on X. This indicates a classical derivation of the appearance 
of equivariant Laplacians in the quantization of tr-models. 

It is a pleasure to thank S. Albeverio, H. Azad, S. Paycha, A. Reznikov, and M. Slupin- 
ski for stimulating discussions and especially D. Bennequin and J. Jost for their helpful 
interest. Finally I would like to acknowledge the support from the SFB 237 "Unordnung 
und grol3e Fluktuationen" in Bochum during the final stages of this work. 
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